April 12, 2012

Mass Radiation Poisoning: Today's Top Threat To Humanity

Why Fukushima Can Happen Here: What the NRC and Nuclear Industry Don't Want You to Know

Tune in regularly to the big cable news channels? If so, you should have a good idea what they claim the main threat facing humanity is today - either terrorism, nuclear-armed Iran or global warming! Evidence continues to mount, however, that the major threat to all of mankind today is the growing likelihood of complete meltdown at the Fukushima nuclear plant after the catastrophe of early 2011! Putting aside the real cause of the tragedy (actual reactor damage shows the truth) for the moment, there has been a sweeping and organized program by the authorities in countries from both sides of the Pacific to conceal the full extent of the radiation exposure to an unsuspecting public, by blanket raising of acceptable radiation limits - alongside refusal to measure or publicize heightened readings!

Even as the coverup about the scale of the disaster continues, the military stockpiles radiation pills! And Japan embarks on a dangerous program of burning radioactive debris for many years, poisoning other countries with contaminated air instead of the long-accepted method of burial under concrete! But an even greater threat involves the storage pool at unit 4, where the building is now so unstable that steel jacks are in place to try to prevent the pool from capsizing. If this happens, officials have confirmed that so much radiation would be released, that no one will be able to approach Fukushima for fifty years or more and Tokyo must be evacuated! Such an accident would also affect the common pool that contains over 6,300 spent-fuel rods and cause global catastrophe on an unimaginable scale!

But the biggest coverup of all has been going on for years - during the last three decades Japan used their nuclear program to build up a secret nuclear arsenal to compete with the regional power, China! The dirty secret that the leading powers have kept hidden, is that nuclear power is so expensive and environmentally dangerous that a full accounting of its costs would see all existing plants mothballed. Safer designs which use thorium were shelved because they don’t produce weapons-grade plutonium!

Those who believe they are somehow immune from similar mishaps, should take careful note of the reality as covered within the feature article that, fuel pools in the United States store an average of ten times more radioactive fuel than stored at Fukushima, have virtually no safety features and are vulnerable to accidents and terrorist attacks! One single pool stores more radioactive material than Fukushima, Chernobyl, and all nuclear tests combined and sits just 35 miles away from a major city!

When you realize that safer fission technology has been available all along - but deliberately ignored to ensure a steady supply of enriched uranium for bomb-making purposes, you begin to comprehend the great insanity of those who would endanger all of humanity to achieve a bigger weapons arsenal!

As the Earth continues a prolonged period of heightened earthquake activity and major solar storms, we must avoid being misled by rulers who prefer that we are kept in the dark rather than risk panic! Do your own research - find out how close the nearest nuclear plant is and take sensible precautions!

Fuel Pool 35 Miles from Major American City – which Is Highly Vulnerable to Earthquakes – Contains More Radioactive Cesium than Released By Fukushima, Chernobyl and All Nuclear Bomb Tests COMBINED

Radioactive Fuel Fires: Not Just a Japanese Problem

The spent fuel pools at Fukushima are currently the top short-term threat to humanity.
But fuel pools in the United States store an average of ten times more radioactive fuel than stored at Fukushima, have virtually no safety features, and are vulnerable to accidents and terrorist attacks.
If the water drains out for any reason, it will cause a fire in the fuel rods, as the zirconium metal jacket on the outside of the fuel rods could very well catch fire within hours or days after being exposed to air. See this, this, this and this. (Even a large solar flare could knock out the water-circulation systems for the pools.)
The pools are also filling up fast, according to the Nuclear Regulatory Commission:
fig044 Fuel Pool 35 Miles from Major American City   which Is Highly Vulnerable to Earthquakes   Contains More Radioactive Cesium than Released By Fukushima, Chernobyl and All Nuclear Bomb Tests COMBINED
The New York Times notes that squeezing more rods into pools may increase the risk of fire:
The reactor operators have squeezed spent fuel more tightly into the pools, raising the heat load and, according to some analyses, raising the risk of fire if the pools were ever drained.
Indeed, the fuel pools and rods at Fukushima appear to have “boiled”, caught fire and/or exploded soon after the earthquake knocked out power systems. See this, this, this, this and this.
Robert Alvarez – a nuclear expert and a former special assistant to the United States Secretary of Energy – notes that there have also been many incidents within the U.S. involving fuel pools:
Even though they contain some of the largest concentrations of radioactivity on the planet, U.S. spent nuclear fuel pools are mostly contained in ordinary industrial structures designed to merely protect them against the elements. Some are made from materials commonly used to house big-box stores and car dealerships.
All spent fuel pools at nuclear power plants do not have steel-lined, concrete barriers that cover reactor vessels to prevent the escape of radioactivity. They are not required to have back-up generators to keep used fuel rods cool, if offsite power is lost.
For nearly 30 years, Nuclear Regulatory Commission (NRC) waste-storage requirements have remained contingent on the opening of a permanent waste repository that has yet to materialize. Now that the Obama administration has cancelled plans to build a permanent, deep disposal site at Yucca Mountain in Nevada, spent fuel at the nation’s 104 nuclear reactors will continue to accumulate and are likely remain onsite for decades to come.
According to Energy Department data:
  • The spent fuel stored at 28 reactor sites have between 200-450 million curies of long-lived radioactivity;
  • 19 reactor sites have generated between 100-200 million curies in spent fuel; and,
  • 24 reactor sites have generated about 10-100 million curies.
Over the past 30 years, there have been at least 66 incidents at U.S. reactors in which there was a significant loss of spent fuel water. Ten have occurred since the September 11 terrorist attacks, after which the government pledged that it would reinforce nuclear safety measures. Over several decades, significant corrosion has occurred of the barriers that prevent a nuclear chain reaction in a spent fuel pool — some to the point where they can no longer be credited with preventing a nuclear chain reaction. For example, in June 2010, the NRC fined Florida Power and Light $70,000 for failing to report that it had been exceeding its spent fuel pool criticality safety margin for five years at the Turkey Point reactor near Miami. Because of NRC’s dependency on the industry self-reporting problems, it failed to find out that there was extensive deterioration of neutron absorbers in the Turkey Point pools and lengthy delays in having them replaced.
There are other strains being placed on crowded spent fuel pools. Systems required to keep pools cool and clean are being overtaxed, as reactor operators generate hotter, more radioactive, and more reactive spent rods. Reactor operators have increased the level of uranium-235, a key fissionable material in nuclear fuel to allow for longer operating periods. This, in turn, can cause the cladding, the protective envelope around a spent fuel rod, to thin and become brittle. It also builds higher pressure from hydrogen and other radioactive gases within the cladding, all of which adds to the risk of failure. The cladding is less than one millimeter thick (thinner than a credit card) and is one of the most important barriers preventing the escape of radioactive materials.
I co-authored a report in 2003 that explained how a spent fuel pool fire in the United States could render an area uninhabitable that would be as much as 60 times larger than that created by the Chernobyl accident. If this were to happen at one of the Indian Point nuclear reactors located 25 miles from New York City, it could result in as many as 5,600 cancer deaths and $461 billion in damages.
The U.S. government should promptly take steps to reduce these risks by placing all spent nuclear fuel older than five years in dry, hardened storage casks — something Germany did 25 years ago. It would take about 10 years at a cost between $3.5 and $7 billion to accomplish. If the cost were transferred to energy consumers, the expenditure would result in a marginal increase of less than 0.4 cents per kilowatt hour for consumers of nuclear-generated electricity.
Another payment option is available for securing spent nuclear fuel. Money could be allocated from $18.1 billion in unexpended funds already collected from consumers of nuclear-generated electricity under the Nuclear Waste Policy Act to establish a disposal site for high-level radioactive wastes.
This situation cannot be blamed on the nuclear industry alone (which wouldn’t exist without government subsidization of the nuclear industry). The U.S. government promised to come up with a permanent storage solution more than a decade ago, but has failed to do so. As nuclear affairs chief Terry Pickens for Xcel Energy correctly says:
We were able to get it where we thought we could make it to 1998, and they are still not performing. And now we still want to refuel and operate our reactors, so we have to make more space in the pools.
The New York Times noted in 2005:
Most of the plants now operating were designed to store fuel for only a few years, because engineers expected that it would either be recycled or buried. The Energy Department was supposed to begin accepting fuel for burial in 1998 but has not yet done so.
The Nuclear Regulatory Commission has repeatedly said that cask storage and pool storage are equally safe. On March 14, the commission’s chairman, Nils J. Diaz, told reporters that the pools ”are not easily breached structures.”
After an attack, they would be very easy to cool, he said. ”You get a couple of fire hoses, and spray them, and you have many, many hours,” he said, before there could be any radiological release, giving officials time to contain the problem.
That isn’t working out so well at Fukushima.

Single Pool Near Major American City Holds More Cesium than Fukushima, Chernobyl and all Nuclear Tests … Combined

No comments:

Post a Comment